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§@ Hierarchical (Multi-Stage)
Generalized Linear Models
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Introduction

* Some inferential problems require non-
classical approaches; e.g.

— Heterogeneous variances and covariances across
environments.

— Different distributional forms (e.g. heavy-tailed or
mixtures for residual/random effects).

— High dimensional variable selection models

* Hierarchical Bayesian modeling provides some
flexibility for such problems.
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Heterogeneous variance models
(Kizilkaya and Tempelman, 2005)

* Consider a study
involving different
subclasses (e.g. herds)

— Mean responses are
different.

— But suppose residual
variances are different
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e Let’s discuss in contexi : o 15
of LMM (linear mixed fability
model)
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Recall linear mixed model
e Given:
y=XB+Zu+e

e~N (0,R(&))
R(&) has a certain “heteroskedastic” specification.

yIBug~p(ylpug)=N (XB+Zu,R(E))

. g determines the nature of heterogeneous
residual variances
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Modeling Heterogeneous Variances

/

* Suppose €' =|e;, e, - eyl
ea~N (O.R, (¢)=1, o7 )

€l

— with aez as a “fixed” intercept residual variance
— 7> 0 k" fixed scaling effect.
— v, >0 " random scaling effect.

o’ = e27/kV|; k=12,...s:1=12...1
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Subjective and Subjective Priors
* “intercept” variance ol ~ p(Gez) : subjective flat or
conjugate vague inverted-gamma (IG) prior

* |nvoke typical constraints for “fixed effects”
— Corner parameterization: y,= 1.
— Flat or vague IG prior p(y,); k=1,2,..,s

e Structural prior for “random effects”

p(v, |et,) = (o, -1 (v) (e exp(_ (e, —1)}

1_1(05e) VI
—i.e., v,~ |G(0Le’ o, -1). o, functions like a “variance
component” for residual
1 variances.-> hyperparameter

e E(v,)=1; o2=Var(V,)=——— 1
(!) Vv (I) ae_z CV(V||OCe): 1
a,—2 8§0/°6



Remaining priors

I”

e “Classical” random effects

ule ~ p(ule) =N (0,G(9))
e “Classical” fixed effects

B~ p(B)

e “Classical” random effects VC

¢~ p(o)
* Hyperparameter (Albert, 1988)

1 SAS PROC MCMC doesn’t seem to
o ~ p(Ol ) — handle this...prior can’t be written
e e 2 i i
(]_-|- ae) as function of corresponding
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What was the last prior again???
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Rosa el al. (2004)

df

Different diffuse priors can have different impacts on

posterior inferences!...if data info is poor

1
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Joint Posterior Density

* LMM:

p(B.u,c’,7,v,9,a,|y)
o p(y|B,u,02,7,v)p(B)p(ul9)p(9)

p(fff)(ljl P (7 )j[H p(V Iae)j p(a. )
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Details on FCD

* All provided by Kizilkaya and Tempelman (2005)

— All are recognizeable except for «,

p(ae |B’u1(P,'Y,V,y,L,T)

) ((ie(;;f exp[_( o _1)2\,,1) .; (1) “p(a,)

— Use Metropolis-Hastings random walk on V. = log (e, )
using normal as proposal density.
* For MH, generally a good idea to transform parameters so

that parameter space is entire real line...but don’t forget to
include Jacobian of transform.
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